Задача скачана с сайта <u>www.MatBuro.ru</u>. ©МатБюро — Решение задач по высшей математике

Тема: Дифференциальные уравнения

Задание. Решить уравнение y' = -y/x $(x \neq 0)$.

РЕШЕНИЕ. Уравнение разрешено относительно производной. Заменяем y' на dy/dx, умножаем обе части уравнения на dx и делим на y. Получаем

$$\frac{dy}{y} = -\frac{dx}{x}.$$

Интегрируем полученное уравнение:

$$\int \frac{dy}{y} = -\int \frac{dx}{x} + C, \quad \ln|y| + \ln|x| = C. \tag{1}$$

Постоянную C можно записать в виде $C=\ln |\widetilde{C}|$ ($\widetilde{C}\neq 0$) (так как любое положительное или отрицательное число C может быть представлено как натуральный логарифм другого, положительного числа $|\widetilde{C}|$). Подставляя это выражение в (1), получим

$$\ln|xy| = \ln|\widetilde{C}|, \ (\widetilde{C} \neq 0).$$

Потенцируя последнее равенство, находим общий интеграл $xy=\widetilde{C}$ (семейство гипербол). При делении на y мы могли потерять решение y=0. Подставляя y=0 в исходное уравнение, видим, что это решение и оно может быть получено из общего интеграла при $\widetilde{C}=0$. Таким образом, общий интеграл дается формулой

$$xy = \widetilde{C},$$

где \widetilde{C} может принимать любые значения (в том числе $\widetilde{C}=0$).