Решение игры с платежной матрицей 3×4 сведением к задаче линейного программирования

ЗАДАНИЕ.

Дана матрица игры. Привести игру к задаче линейного программирования. Решить игру в смешанных стратегиях.

РЕШЕНИЕ. Матрица игры
$$A = \begin{pmatrix} 2 & 4 & 8 & 5 \\ 6 & 2 & 4 & 6 \\ 3 & 2 & 5 & 4 \end{pmatrix}$$
.

Игра имеет большую размерность, попробуем ее уменьшить, выделив невыгодные стратегии и вычеркнув их из матрицы (выполняем доминирование):

1. Все элементы столбца B3 больше или равны элементам столбца B2, поэтому вычеркиваем столбец B3

$$\begin{pmatrix} 2 & 4 & 5 \\ 6 & 2 & 6 \\ 3 & 2 & 4 \end{pmatrix}$$

2. Все элементы столбца В4 больше или равны элементам столбца В2, поэтому вычеркиваем столбец В4.

$$\begin{pmatrix} 2 & 4 \\ 6 & 2 \\ 3 & 2 \end{pmatrix}$$

3. Так как все элементы строки A3 меньше или равны элементам строки A2, вычеркиваем строку A3.

$$\begin{pmatrix} 2 & 4 \\ 6 & 2 \end{pmatrix}$$

Получили матрицу (A1, A2, B1, B2):
$$\widetilde{A} = \begin{pmatrix} 2 & 4 \\ 6 & 2 \end{pmatrix}$$
.

Составим пару симметричных двойственных задач, так чтобы исходная задача была стандартной задачей максимизации, матрица коэффициентов совпадала с платежной матрице A, а коэффициенты при неизвестных в целевой функции и свободные члены неравенств были бы равны единице.

$$f(x) = x_1 + x_2 \to \max,$$

$$\begin{cases} 2x_1 + 4x_2 \le 1, \\ 6x_1 + 2x_2 \le 1, \\ x_1, x_2 \ge 0. \end{cases}$$

$$g(y) = y_1 + y_2 \rightarrow \min,$$

$$\begin{cases} 2y_1 + 6y_2 \ge 1, \\ 4y_1 + 2y_2 \ge 1, \\ y_1, y_2 \ge 0. \end{cases}$$

Решаем первую задачу симплекс-методом. Приводим к каноническому виду:

$$f(x) = x_1 + x_2 \to \max,$$

$$\begin{cases} 2x_1 + 4x_2 + x_3 = 1, \\ 6x_1 + 2x_2 + x_4 = 1, \\ x_1, x_2, x_3, x_4 \ge 0. \end{cases}$$

Составляем симплекс-таблицу и решаем задачу преобразованием таблиц:

Базис	План	x 1	x2	х3	x4
х3	1	2	4	1	0
x4	1	6	2	0	1
f	0	-1	-1	0	0
Базис	План	x1	x2	х3	х4
х3	2/3	0	10/3	1	-1/3
x1	1/6	1	1/3	0	1/6
f	1/6	0	-2/3	0	1/6
Базис	План	x1	x2	х3	х4
x2	1/5	0	1	3/10	-1/10
x1	1/10	1	0	-1/10	1/5
f	3/10	0	0	1/5	1/10

Находим:

$$x_1 = \frac{1}{10}, \ x_2 = \frac{1}{5}, \ f_{\text{max}} = \frac{3}{10}.$$

 $y_1 = \frac{1}{5}, \ y_2 = \frac{1}{10}, \ g_{\text{min}} = \frac{3}{10}.$

Из решений пары двойственных задач получим цену игры и оптимальные стратегии игроков:

$$\tilde{v} = \frac{1}{f_{\text{max}}} = \frac{10}{3}$$

$$\widetilde{S}_A = vY = \frac{10}{3} \left(\frac{1}{5}; \frac{1}{10} \right) = \left(\frac{2}{3}; \frac{1}{3} \right),$$

Задача скачана с сайта www.MatBuro.ru

©МатБюро - Решение задач по исследованию операций, ЭММ и другим предметам

$$\widetilde{S}_B = vX = \frac{10}{3} \left(\frac{1}{10}; \frac{1}{5} \right) = \left(\frac{1}{3}; \frac{2}{3} \right).$$

Оптимальные стратегии для исходной игры:

$$S_A = \left(\frac{2}{3}; \frac{1}{3}; 0; 0\right), \ S_B = \left(\frac{1}{3}; \frac{2}{3}; 0; 0\right), \$$
цена игры $v = \frac{10}{3}$.