Задача скачана с сайта www.MatBuro.ru Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm ©МатБюро - Решение задач по математике, экономике, статистике

Пример решения задачи. Бинарные отношения

Доказать, что для любых бинарных отношений $(P_1 \circ P_2)^{-1} = P_2^{-1} \circ P_1^{-1}$.

Доказательство.

Обратным отношением для P_1 является отношение $P_1^{-1} = \{(x,y): (y,x) \in P_1\}$. Обратным отношением для P_2 является отношение $P_2^{-1} = \{(x,y): (y,x) \in P_2\}$. Композицией отношений P_2^{-1} , P_1^{-1} , по определению, будет отношение $P_2^{-1} \circ P_1^{-1} = \{(x,y): \exists z(x,z) \in P_2^{-1}, (z,y) \in P_1^{-1}\}$.

Композицией отношений P_1, P_2 является отношение

$$P_1 \circ P_2 = \{(x, y) : \exists z(x, z) \in P_1, (z, y) \in P_2\}.$$

Обратным отношением для композиции отношений P_1, P_2 является

$$(P_1 \circ P_2)^{-1} = \{(x, y) : (y, x) \in P_1 \circ P_2\} = \{(x, y) : \exists z (y, z) \in P_1, (z, x) \in P_2\}.$$

Из определения следует, что если $(y,z) \in P_1$, то $(z,y) \in P_1^{-1}$. Если $(z,x) \in P_2$, то $(x,z) \in P_2^{-1}$. Таким образом,

$$(P_1 \circ P_2)^{-1} = \{(x, y) : \exists z (y, z) \in P_1, (z, x) \in P_2\} = \{(x, y) : \exists z (z, y) \in P_1^{-1}, (x, z) \in P_2^{-1}\} = P_2^{-1} \circ P_1^{-1},$$

что и требовалось доказать.